Updated 22 May 2016.
Vaccines And How They Are Made
The chemicals that go into vaccination, includes info on expanded vaccine schedule - newly updated 6 April 2015
Your Immune System, How It Works And How Vaccines Damage It
Vaccines and Immune Dysfunction - updated 19 February 2015
The Herd Immunity Theory - Treating Our Children Like Cattle
The Herd Immunity Theory - updated 5 October 2014
Did Vaccines Really Halt Killer Diseases?
Did Vaccines Really Stop Diseases? A look at history - updated 10 April 2010 with modern day victim of smallpox vaccine
Vaccination And Abortion
The Use Of Foetal Tissue in Vaccines - newly updated 1 October 2014
Vaccines: A Religious Contention
Vaccines: A Religious Contention - updated 22 May 2016
Pediacel 5-in-1 Super Jab
5 in 1 vaccine - updated 15 February 2016
Manufacturer's Information About Pediacel 5-in-1 Vaccine
Autism and Cerebral Palsy From DPT Vaccine
Maryamber's Story - and other Cerebral Palsy after Vaccination Cases, updated 4 March 2015
Gardasil and Cervarix - The Cervical Cancer Vaccines
Gardasil and Cervarix - The Cervical Cancer Vaccine - now updated 31 March 2010 - Spain Withdraws Batch Of HPV Vaccine
Gardasil Vaccines Continued
Gardasil Vaccine Continued And Cases Of Gardasil/Cervarix Damage And Death, updated 22 May 2016
Prevnar Vaccination
Prevnar and Pneumonia Vaccinations, including info on PCV 13, updated 2 August 2015
Travel Vaccines
Travel Vaccines - updated 17 September 2014
Tetanus Vaccine
Tetanus Vaccine - updated 6 May 2012
MMR, Single Vaccines And MMRV Vaccine
MMR and Single Measles, Mumps and Rubella vaccines and MMRV information - updated 17 April 2016 Includes COURT RULING SHOWING MMR CAUSED ASD! Contains Graphic Damage Photo.
Killer Measles Vaccine Is Withdrawn And Other Vaccine Death Cases
Four Babies Killed In Measles Vaccine Campaign - updated 26 August 2012 with more deaths, PAGE FULL.
Infant Vaccines Produce Autism Symptoms In Primates
Shots Cause Autism In Monkeys
If You Don't Want The MMR We'll Force You and Other Vaccination Force Stories
Bully Boy Tactics Proposed - includes case of forced vaccination with various vaccines, updated 22 May 2016
Meningitis C Vaccine
Various articles and citations - updated 2 August 2015
Hepatitis B Vaccine...aluminium....thimerosal (mercury)....yeast...but don't worry, it's gluten free!
Hep B Manufacturer's Information - updated with details of court admitted MS and Death Caused By Hep B Vaccine, updated 17th January 2016
Hepatitis B Vaccine Kills Baby and other Vaccine Death Cases
Updated 19 February 2016
Vaccine Companies Investigated For Manslaughter and other Vaccine Court Cases
And Other Vaccine Companies/Doctors On Trial For Vaccine Deaths, Injuries and Fraud - Updated 22 May 2016 now including Investigations into Swine Flu Scam
Iatrogenic Child Abuse
Iatrogenic child abuse: vaccinations and other medical abuse of children by doctors - Updated 14 April 2014
Bullying, Rude and Discriminatory Doctors who Forget Vaccines are a CHOICE
Updated 15 January 2016
My Fight For Health After Vaccination
A Vaccine Damage Case - updated 6 March 2012 to include my friend's and relatives vaccine damage cases
Vaccine Injury Photos From The CDC
WARNING! Very Graphic Vaccine Damage Pictures. Don't Look If Easily Upset - updated 27 February 2014
Vaccine Debate Page
A Place Where You Can Send Your Views On Vaccines And Health - updated 21 August 2011
Vaccination And Your Legal Rights
Your Legal Right To Own Your Own Body - updated 16 August 2009 with new information
Vaccination DESTROYS Natural Immunity!
Transplacental and Breast Milk Immunity and How they are Diminished by Vaccination - new page 10 May 2013
Disease Killing Properties Of Breast Milk
Immunising Your Baby With Breast Milk - updated 18 June 2012
Polio: The Disease, the Vaccine and the Controversies
NEW Page - updated 26 August 2012
Baby Gallery
Unvaccinated Bundles of Joy! - updated 19 February 2016
The Home Birth Pages - My Story
The Hospital Birth Experience
The Home Birth Pages
My Unassisted Childbirth - Reclaiming My Femininity - updated 17 May 2012
The Home Birth Pages - British Maternity Care (The Bullying I got When Pregnant with Yanny)
My Struggle To Have A Natural Pregnancy With The NHS - updated 5 May 2012
The Home Birth Pages - Yanny's Unhindered Home Birth
My Baby's Unhindered Home Birth - updated 6 May 2012
Home Birth And Your Legal Rights. How To Have A Natural Birth
Your Right To Birth Without Violence And Other Home Birth Issues - updated 17 May 2012
And Tips For Easing Pain. Updated 6 May 2012
Obstetric Myths and Realities
Caesareans and Breech Births - updated 17 May 2010
Vaccine Information For Pregnant Women
What You Should Know If Considering A Vaccination During Pregnancy - updated 17 January 2016 - ALERT: MISCARRIAGES AND STILLBIRTHS AFTER H1N1 VACCINE!!
Home Education Photo Diary
Photo Diary of Child Friendly Home Schooling - updated 7 August 2009 - PAGE FULL, WILL ADD NEW ONE LATER.
Home Education Photo Diary
Page two of my children's home schooling - updated 9 March 2015
Home Education And Your Legal Rights
Updated 3 March 2012.
Dangers Of Formula Milk
Formula Milk Is NOT As Good As Breast Milk And Is Not A Breast Milk Substitute! Updated 14 June 2012
Vitamin K: Does Your Baby Really Need It?
Updated 6 May 2012
Mercury Free Vaccines Still Have Mercury In Them
What's Not On The Label
Pro-Vaccine Arguments
VS. Medical Evidence - updated 17 April 2014
Pro-Vaccine Arguments Page 2
VS. Medical Evidence - NEW page completed on 25th August 2012
Pro-Vaccine Arguments Page 3
An exploration of pro-vaccine arguments - 22nd March 2016
Vaccine Shedding
The spreading of viruses and bacteria via vaccination. Includes Information on the symptoms and treatment of measles. Updated 1 April 2015
Why I Don't Vaccinate My Children
And The Birth of VAN UK - updated 28 March 2015
Six Reasons Why I Don't Vaccinate My Children
Some of the reasons I don't vaccinate, from my blog, 7th October 2012
Vaccines And Sudden Infant Death Syndrome
The Link Between Vaccines And SIDS - updated 2 July 2014
Midwives And Health Professionals Against Vaccination
Updated 17 April 2016
Media Censorship of Vaccine News
Updated 17 April 2016 - Featuring trailer from BANNED vaccine film Vaxxed.
BCG Vaccine
BCG vaccine information - new page 26 January 2016
Homeopathic Vaccination
Updated 7 October 2012
Boy Partially Losses Hearing After Vaccination
Updated 22nd August 2012 with more deafness and blindness after MMR cases
Delaying Vaccination Cuts Asthma Risk (and Other Allergies Related to Vaccines).
Citation in the Journal of Allergy And Clinical Immunology and Info on Vaccines and Auto-Immunity Including MMR Makes Eczema Worse! Updated 17 January 2016
Vaccines, Mercury, Aluminium and Autism Studies
With link to http://www.mercurymadness.org. Manufacturer's Say Vaccines Cause Autism! - updated 15 February 2016
Contraindications (people who shouldn't be vaccinated) and side-effects From The Merck Manual (vaccine manufacturer)
Medical Information On Who Should Not Have Vaccines - Merck and GP Notebook - updated 6 September 2009
Flu Vaccines
Updated 18 February 2016
Swine Flu Epidemic/ H1N1 Vaccine Deaths and Injuries
Created By Lab Blunder - now recording deaths and injuries from jab - page now full.
Swine Flu Vaccine
Ingredients and other information - updated 13 February 2016
Meningitis B Vaccine
Data Sheet and other information - 3rd March 2016
What You Should Know About Tamiflu - updated 13 April 2014
More Educated Mothers Are Less Likely To Vaccinate
A New Study Shows That University Educated Mums Are More Likely To Refuse Vaccines And Other Studies Showing Educated Mothers Refusing Vaccines - updated 28 August 2014
Diseases In The Vaccinated
Medical Studies And Reports Showing Vaccines Do Not Immunise - Updated 25 April 2009
Diseases In The Vaccinated Page 2
Page Full.
Diseases in the Vaccinated - Page 3
Vaccine 'Preventable' Diseases Occuring in the Vaccinated- updated 6 March 2016
Seven School Kids Taken To Hospital After Vaccines and Other Vaccine Disasters
Kids sicken after DT/IPV Vaccines - and other reactions after vaccination drives, updated 2 February 2016
Infant Mortality Rates Fall Where 'Immunisation' Rates Are Low
Infant Mortality Rates Fall In Line With Lowering Vaccination Rates - updated 31 January 2013
Chickenpox: Is It Really A Killer Disease?
Suddenly this benign childhood illness has turned into a 'deadly killer' because they are introducing a vaccine - updated 6 March 2016
Selective Vaccination
If You Decide To Vaccinate - updated 19th March 2016
Vaccine Damage Payments Unit
How To Make A Claim For Compensation If Your Loved One Is Vaccine Injured - updated 1 September 2014
Legal Help For Vaccine Damage And Pro-Choice Issues
Solicitor/Lawyer Information - updated 2 June 2012
Treating Childhood Illnesses
These days, doctors and parents have lost the art of actually nursing their child through a normal childhood illness. Here we tell you the symptoms and treatment of measles, mumps, rubella, chickenpox, rotavirus and whooping cough - updated 15 June 2012
Childhood Diseases Can Be Good For Your Child!
Studies showing childhood diseases reduce autoimmunity - updated 24 February 2016
Stupid Medical Advice Which Has Been Consigned To History Books
Updated 22 February 2016
Double Standards - it's not okay to ingest this but fine if we inject it
Authorities Admitting Concern Over Chemicals Used In Other Products That Are Also Used In Vaccines - updated 18 February 2016
Ian's Life
A page dedicated to a little boy who died of an adverse reaction to Hepatitis B vaccine. WARNING: graphic vaccine damage picture
Animal Vaccines
The Dangers of Animal Vaccines and naturally rearing animals - updated 16 May 2014
Remember My Name
Honouring Those Who Have Died From Vaccination - updated 15 April 2012
Remember My Name - Page 2
Honouring Those Who Have Died From Vaccination - Page 2, updated 25 September 2015
Vaccines, BSE and vCJD
In Memory of Andy Black - WARNING, GRAPHIC PHOTOS, DON'T LOOK IF EASILY UPSET - updated 2 August 2012
Vaccination: An Ecological Disaster
Environmental Reasons Why Vaccines Aren't so Great. 2% of World HIV Cases Caused By Vaccines. NEW PAGE.
Skewed Statistics
How Studies are 'Doctored' to Make Vaccines Seem More Effective - NEW page! updated 02 April 2015
Youth Page
Under 18's Page - Know Your Vaccination Rights - Updated 25 June 2012
Take Vaccines Out of Schools Campaign!
Example letters you can use to complain about the use of vaccination in schools - updated 2 February 2016
Vaccines Didn't Save Us From Smallpox
Historical Evidence Against Vaccination and Historical Vaccine Death Cases
A Parent's Guide against Pro-Vaccine Pediatricians
NEW PAGE - Countering Pro-Vaccine Arguments, 30th April 2012
Rotavirus Vaccine
Rotavirus Vaccine - another vaccine added to the UK schedule - updated 02 April 2015
The Problems with Vaccinating Premature Babies
New page. Updated 22 May 2016
Paracetamol (Acetaminophen), Ibuprofen and Vaccines
New Page - updated 13 April 2014
Vaccines and Chronic Fatigue Syndrome
Ebola News
The latest scare that WHO want to frighten you with - 29 March 2015
Vaccines and Seizures
Updated 25 January 2016
Cyanide in Vaccines
The dirty ingredient they don't want you to know about
Zika Virus News
Microencephy May be the Result of Vaccinating in Pregnancy - New Page 24th February 2016
Donate To VAN UK to Keep This Website Running!
Donate To VAN UK to Keep This Website Running!
Letters To VAN UK
About vaccination and it's affects - updated 10 March 2016
Guest Book
Comments are Moderated (Polite Messages Only)- Moderated 23 September 2015.
Contact Us
Contact Us - updated 8 February 2016

Rotavirus Vaccine

Rotavirus Vaccine: When the Benefits Don’t Outweigh the Risks

According to the NHS, they are introducing oral rotavirus vaccine into the already overcrowded vaccine schedule for babies under four months, starting in September 2013.  It has already been given to US babies.

Rotavirus – The Disease

Rotavirus is the most common form of gastroenteritis and most children will have had it by the time they reach five years of age.

The NHS describe it as ‘inflammation of the stomach and bowel.  The most common cause is a viral or bacterial infection.  The illness usually lasts three to five days and the two most common symptoms are diarrhoea and vomiting.   In most cases, gastroenteritis does not need to be diagnosed because the illness usually disappears without treatment.’

In first world countries it is a mild illness and very rarely causes death.  In Western Europe there are less than 10 deaths per year in most countries.  (WHO listed fewer than five deaths per year in 74 countries).  India, Nigeria, The Democratic Republic of Congo, Ethiopia and Pakistan accounted for more than half of the 453,000 estimated global deaths. 

The most important way you can prevent complications of rotavirus is to keep your child hydrated by giving breast milk or water frequently.  If your child isn’t passing much urine or having many wet nappies, if they have a dry mouth, sunken eyes, no tears if they cry, drowsiness or rapid breathing, these are all signs of dehydration and you should seek urgent medical advice. 

Preventing Rotavirus

Breastfed babies get less gastroenteritis but health departments the world over are failing to tell mothers this.  As most of the hospitalisations occur in very young babies, breastfeeding could help to prevent this.

A study in the European Journal of Pediatrics looked at children up to one year of age in Germany, Switzerland and Austria and collected 1,256 stool samples from babies with gastroenteritis.  315 samples were positive for rotavirus and 941 were negative.  The journal authors wrote that being breastfed at disease inception reduced the risk of gastroenteritis due to rotavirus.  They found that the protective effect was strongest in the first six months of life, a time when complications from the illness are most likely.  They concluded:

‘Our study adds to the evidence of a protective concurrent effect of breastfeeding against rotavirus infection in infants, particularly in children 6 months and younger.’

Scientists have also isolated the component of breast milk that is responsible for killing rotavirus and  and when they grew rotavirus in a dish, breast milk prevented it from replicating.

For third world children, access to the breast may mean the difference between life and death.  In countries like Pakistan, the most common cause of child mortality is diarrhoea and it is most often caused by bottle feeding and lack of hygiene.  Professor Arif from the National Institute of Child Health and Aga Khan University Hospital said that children in cleaner areas of the city did not get diarrhoea as much.

“There are fewer complaints of diarrhea in Defence and Clifton as compared to Machhar Colony,” he said.

Good hygiene is also important in the first world in preventing rotavirus and other bugs.  Common sense hygiene practices should be employed, such as:

·         Making sure your child washes his hands after going to the toilet and before meal times.

·         Making sure you wash your hands after changing a nappy.

·         Having separate towels, flannels and eating utensils for each member of your family.

·         Keep your child at home for 48 hours after any diarrhoea and vomiting, to prevent spread to other children.

The Vaccine

The NHS say they are introducing the vaccine to cut the number of hospitalisations and GP visits due to rotavirus.  They say:

‘The programme is expected to cost around £25 million a year, but is anticipated to save the NHS around £20 million a year.’

Someone in the Department of Health did not do their math properly because that would mean the vaccine programme costs the taxpayer an extra five million a year.


The ingredients of the vaccine are human 89-12 strain of rotavirus, vero cells (monkey kidney tissue), Dulbecco’s Modified Eagle Medium (the medium used to maintain the monkey kidney cells, which contains a number of amino acids, vitamins and phenol red), sorbitol and sucrose.

During the manufacturing process, pig products were used and porcine circovirus type 1 (PCV-1) is present in the vaccine.

This virus is unintentionally present and although the vaccine data sheet says the virus is not known to cause disease in humans, it does cause disease in pigs. 

It also contains calcium carbonate, sterile water, xanthan and an antacid to prevent the stomach from neutralising the vaccine on digestion.

They don’t know if Antibodies Mean Immunity

The data sheet for Rotarix says:

‘The exact immunologic mechanism by which ROTARIX protects against rotavirus gastroenteritis is unknown….. Pharmacodynamics Immunogenicity: A relationship between antibody responses to rotavirus vaccination and protection against rotavirus gastroenteritis has not been established.’

The vaccine has never been tested to see if it causes cancer, mutates into another illness or impairs fertility, so if doctors say it’s safe they’ve not done the testing to show that.


The trial information did not state what the placebo was.  In many trials, aluminium or another vaccine are often used.

The most common side-effects are fussiness and irritability (in more than half the children vaccinated), cough and runny nose, fever, loss of appetite, vomiting and diarrhoea (diarrhoea occurs in 4% of those vaccinated and it is a vaccine designed to prevent diarrhoea).


In the post-trial phase, intussusception (where the bowel folds in on itself and becomes blocked) was noticed to be occurring in children, most commonly in the first week after vaccination.  This is a life threatening condition that is only fixable by surgery.  The rate of intussusception was estimated to be anything from 0 to 4 cases per 100,000 children vaccinated with Rotarix.  The CDC rather casually say:

‘Given that the information available suggests a small risk of intussusception caused by Rotarix, and given that the benefits of rotavirus vaccination are great, CDC continues to recommend Rotarix to prevent rotavirus disease.’

Withdrawn Vaccines

The first rotavirus vaccine to be licensed in the US, Rotateq, was withdrawn in October 1999, only a year after its introduction because it caused intussusception in 10 out of every 100,000 vaccinated children.

Then in March 2010 the subsequent vaccine, Rotarix, was found to contain pig DNA from circovirus type one.  This virus wasn’t supposed to be in the vaccine and they had only just discovered that in fact, it had been present in the initial stages of the development of the vaccine and it had been present during the clinical trials, without the FDA’s knowledge. 

“In many countries, rotavirus causes so much severe illness and death that the known benefits of continued use of Rotarix far outweigh any theoretical risk of harm from the vaccine,” said Dr. Thomas Frieden, Director of the Centers for Disease Control and Prevention, in a damage control statement to the press.

But how do they know if the benefits outweigh the risks when they don’t know what those risks are and they weren’t even aware that the vaccine contained pig virus DNA?

Now, the same vaccine that was temporarily withdrawn in the US is coming to the UK and what’s more, it still has pig virus in it.  This is listed in the ingredients section of the manufacturer’s data sheet.

Vaccine Shedding

As this vaccine is live it is shed in the faeces, urine and saliva of the recipient.  In a study in Singapore looking at shedding, stool samples were collected and it was found that up to 80.0% of people were shedding live rotavirus a week after their vaccine.  Up to 64.1% were shedding the virus 15 days after the vaccine, 24.3% were shedding it a month later and 2.6% were still shedding it two months later.

The ability of the rotavirus vaccine virus to transmit to others has not been evaluated in any study.  If the aim of the vaccine is to reduce rotavirus related hospitalisations, giving the live virus on a mass scale may in fact put newborn babies at risk of getting the disease.


In eight trials of the vaccine, there were 68 recorded deaths (out of 36,755 children) in the 31 day post-vaccination follow up, making the official rate of death from the vaccine 0.19%.  The actual rate of death is probably higher, given that the follow up period is so short.  The most common cause of death after vaccination was pneumonia, which occurred in 19 of the 68 deaths.

In the Rotarix BLA clinical review, the Vaccine Clinical Trials Branch admit that there is an increased risk of death from pneumonia after getting the vaccine.

Despite all this health authorities continue to recommend it when good old fashioned mother’s milk can prevent rotavirus without any of the risk.


NHS Choices, Gastroenteritis in Children.  Web. 24th February 2013.

NHS Choices, Rotavirus Vaccine to be Introduced for Babies.  Web. 24th February 2013.

Burden of community-acquired and nosocomial rotavirus gastroenteritis in the pediatric population of Western Europe: a scoping review.  BMC Infectious Diseases 2012, 12:62.

Estimated rotavirus deaths for children under 5 years of age: 2008, 453 000.  World Health Organisation.  Web. 24th February 2013.

Rotarix BLA Clinical Review.  Food and Drug Administration.  Web. 24th February 2013. 

Updated Label for Rotarix.  Centers for Disease Control and Prevention.  Web. 24th February 2013.

Components of Extraneous Virus Detected in Rotarix Vaccine; No Known Safety Risk.  FDA Recommends Clinicians Temporarily Suspend Use of Vaccine as Agency Learns More.  FDA News Release (22nd March 2010).  Web. 24th February 2013.

Breastfeeding protects against acute gastroenteritis due to rotavirus in infants.  Eur J Pediatr. 2010 Dec;169(12):1471-6.

Rotarix GlaxoSmithKline Vaccine Data Sheet (undated), Food and Drug Administration.  Web. 24th February 2013.

Bottle-feeding might turn your baby into a sitting duck for a number of diseases, say doctors.  The Express Tribune.  Web. 24th February 2013.

Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis, J Clin Invest. 1992 November; 90(5): 1984–1991.

The Data Sheet for Rotavirus Vaccine


ROTARIX is a liquid suspension of the live attenuated RIX4414 strain of human rotavirus of the G1P[8] type for use in the prevention of rotavirus gastro-enteritis. The virus strain derived from the 89-12 strain is obtained by propagation on a well-characterised Vero cell line.
ROTARIX is presented as a clear, colourless liquid, free of visible particles, for ORAL administration only.
Each 1.5 mL dose of the vaccine contains not less than 106.0 CCID50 (cell culture infectious dose 50%) of the RIX 4414 strain of human rotavirus. The vaccine also contains sucrose, di-sodium adipate, Dulbecco’s Modified Eagle Medium and sterile water.

(VAN's note: Vero cell line is monkey kidney tissue).

vCJD Warnings

The manufacture of this product includes exposure to bovine derived materials at the very early steps of the production process. No bovine materials are used in routine production. No evidence exists that any case of vCJD (considered to be the human form of bovine spongiform encephalopathy) has resulted from the administration of any vaccine product.

(VAN's note: Cases of vCJD have occured in clusters in people who have had the same batch of another type of vaccine and scientists agree that the most likely form of transmission is via injection or IV - see this http://www.youtube.com/watch?v=2GpD0wt3LXM).

Unintended Pig Virus in the Rotavirus Vaccine

Porcine Circovirus type 1 (PCV-1) material has been detected in ROTARIX vaccine. PCV-1 is not known to cause disease in animals and is not known to infect or cause disease in humans. There is no evidence that the presence of PCV-1 poses a safety risk.


Rotavirus is likely to affect all children up to the age of five years of age. The peak incidence of rotavirus gastro-enteritis is between 6-24 months of age. Dehydration from rotavirus gastro-enteritis can lead to hospitalisation, which is most common in children under 2 years of age.

They Don't Know if or How Vaccine Antibodies Protect Against Rotavirus!

The immunologic mechanism by which ROTARIX protects against rotavirus gastro-enteritis is not entirely understood. A relationship between antibody responses to rotavirus vaccination and protection against rotavirus gastro-enteritis has not been established.

ROTARIX, which is derived from the most common human rotavirus type G1P[8], has been demonstrated to induce protective immunity against both the G1P[8] type, and also against other non-G1 prevalent strains (See Clinical Trials).

(VAN's Note: for the manufacturer's efficacy trial tables see: http://www.medsafe.govt.nz/profs/datasheet/r/Rotarixvac.pdf).


ROTARIX should not be administered to subjects with known hypersensitivity to any components of the vaccine (see DESCRIPTION), or to subjects having shown signs of hypersensitivity after previous administration of rotavirus vaccines.

ROTARIX should not be administered to subjects with any history of chronic gastrointestinal disease including any uncorrected congenital malformation (such as Meckel’s diverticulum) of the gastrointestinal tract.
Subjects with Severe Combined Immunodeficiency (SCID) disorder (see ADVERSE REACTIONS).

As with other vaccines, administration of ROTARIX should be postponed in subjects suffering from acute severe febrile illness. The presence of a minor infection, such as a cold, is not a contraindication for immunisation.


ROTARIX should under no circumstances be injected.
The administration of ROTARIX should be postponed in subjects suffering from diarrhoea or vomiting.
Administration of ROTARIX may be considered with caution in infants with gastrointestinal illnesses, when, in the opinion of the physician, the risk of rotavirus infection by withholding the vaccine entails a greater risk to the infant. No safety or efficacy data are available for the administration of ROTARIX to infants with gastrointestinal illnesses.
The risk of intussusception has been evaluated in a large safety trial (including 63,225 infants) conducted in Latin America and Finland. No increased risk of intussusception was observed in this clinical trial following administration of Rotarix when compared with placebo (See Adverse Reactions).

However, post-marketing safety data indicate a possible increased risk of intussusception in the 31-day period following the administration of the first dose of ROTARIX. It has not been established whether ROTARIX affects the overall incidence of intussusception. (See ADVERSE REACTIONS).

Therefore, as a precaution, healthcare professionals should follow-up on any symptoms indicative of intussusception (severe abdominal pain, persistent vomiting, bloody stools, abdominal bloating and/or high fever). Parents/guardians should be advised to promptly report such symptoms.

Administration of ROTARIX in immunosupressed infants, including infants on immunosuppressive therapy, should be based on careful consideration of potential benefits and risks.

The Vaccine Sheds and Can Infect Others, Including Newborns and Elderly!


Excretion of the vaccine virus in the stools occurs after vaccination and lasts for 10 days on average with peak excretion around the 7th day. Viral antigen particles detected by ELISA were found in 50% of stools after the first dose and 4% of stools after the second dose. When these stools were tested for the presence of live vaccine strain, 17% were positive.

In two comparative controlled trials, vaccine shedding after vaccination with ROTARIX liquid formulation was comparable to that observed after vaccination with ROTARIX lyophilised formulation. There is a potential risk for transmission to non-vaccinated contacts.

In clinical trials, cases of transmission of excreted vaccine virus to seronegative contacts of vaccinees have been observed without causing any clinical symptoms. Therefore ROTARIX should be administered with caution to infants with close contacts who are immunodeficient, such as individuals with malignancies, or who are otherwise immunocompromised or receiving immunosuppressive therapy. Contacts of recent vaccinees should be advised to observe careful hygiene (including washing their hands) when changing children’s nappies.

The Vaccine Might Not Protect You and They Don't Know How Long It Lasts For

As with any vaccine, a protective immune response may not be elicited in all vaccinees (see CLINICAL TRIALS).
The extent of protection that ROTARIX might provide against rotavirus strains that have not been circulating in clinical trials is currently unknown (see CLINICAL TRIALS).

ROTARIX does not protect against gastro-enteritis due to pathogens other than rotavirus.

Carcinogenicity and Mutagenicity

ROTARIX has not been evaluated for carcinogenicity or mutagenicity.

(VAN's Note: This means that it hasn't been safety tested to see if it causes cancer or if it mutates into another illness).

Impairment of Fertility

ROTARIX has not been evaluated for its potential to impair fertility.

(VAN's Note: This means it has not been safety tested to see if it causes infertility).


ROTARIX has not been evaluated for genotoxicity.

(VAN's Note: This means that it hasn't been safety tested to see if it damages DNA).

Use in Pregnancy (Category B2):

ROTARIX is not intended for use in adolescents or adults. Thus human data on use during pregnancy are not available and animal reproduction studies have not been performed.

Use in Lactation:

ROTARIX is not intended for use in adolescents or adults. Thus human data on use during lactation are not available.
Based on evidence generated in clinical trials, breast-feeding does not reduce the protection against rotavirus gastro-enteritis afforded by ROTARIX. Therefore, breast-feeding may be continued during the vaccination schedule.

Paediatric Use

ROTARIX is intended for use in infants in the first six months of life. ROTARIX should not be administered to children older than 24 weeks of age as safety has not been demonstrated, particularly in relation to risk of intussusception.

Use in the Elderly

ROTARIX is not intended for use in the elderly. Thus human data on use in the elderly are not available.


Co-administration studies have demonstrated that ROTARIX can be given concomitantly with any of the following administered either as monovalent or as combination vaccines: diphtheria-tetanus-acellular pertussis vaccine (DTPa), Haemophilus influenzae type b vaccine (Hib), inactivated polio vaccine (IPV), hepatitis B vaccine (HBV), hexavalent vaccines DTPa-HBV-IPV/Hib, pneumococcal conjugate vaccine and meningococcal serogroup C conjugate vaccine. The studies demonstrated that the immune responses and the safety profiles of the administered vaccines were unaffected.

Clinical studies, involving more than 2,000 subjects, were performed where ROTARIX and oral polio vaccine (OPV) were administered two weeks apart. The immune response to ROTARIX and OPV was unaffected. In three immunogenicity studies, involving approximately 1,200 subjects, ROTARIX was concomitantly administered with OPV. The immune response to OPV, as well as the response to ROTARIX after the second dose, were unaffected. ROTARIX can be concomitantly administered with OPV if this is in accordance with local recommendations. In the absence of local recommendations, an interval of two weeks between the administration of OPV and ROTARIX should be respected.

Although antibodies to rotavirus may be detected in breast milk, the available data show no reduction in efficacy when ROTARIX is administered to breast-fed infants.


Adverse reactions are thought of as very common if they affect more than one in 10 people, common if they affect more than one in 100 but less than one in 10, uncommon if they affect more than one in 1000 but less than one in 100, rare if they affect more than one in 10,000 but less than one in 1000 and very rare if they affect less than one in 10,000.

Gastrointestinal disorders:
Common: diarrhoea
Uncommon: flatulence, abdominal pain
Skin and subcutaneous tissue disorders:
Uncommon: dermatitis.

(VAN's Note: This vaccine is to protect against diarrhoea and it's most common side-effect is diarrhoea).

Safety in preterm infants

In a clinical study, 1009 preterm infants were administered ROTARIX lyophilised formulation or placebo (198 were 27-30 weeks gestational age and 801 were 31-36 weeks gestational age). The first dose was administered from 6 weeks after birth. Serious adverse events were observed in 5.1% of recipients of ROTARIX as compared with 6.8% of placebo recipients. Similar rates of solicited and unsolicited symptoms were observed in ROTARIX and placebo recipients. No cases of intussusception were reported.

(VAN's Note: They don't say what the placebo was.  In vaccine trials it is usually another vaccine or aluminium or another adjuvant - NOT a totally unvaccinated control).

Safety in infants with human immunodeficiency (HIV) infection

In a clinical study, 100 infants with HIV infection were administered ROTARIX lyophilised formulation or placebo. The safety profile was similar between ROTARIX and placebo recipients.

(VAN's Note: This contradicts what they say in the same data sheet about the danger of shedding and other problems in the immuno-compromised).

Post-marketing data

Gastrointestinal disorders:

Rare: intussusception*
gastroenteritis with vaccine viral shedding in infants with Severe Combined Immunodeficiency
(SCID) disorder.

*Preliminary data from a large post-marketing epidemiological safety study in Mexico indicate a possible increased risk of intussusception in the 31 day period following the first dose. The relative incidence of intussusception with ROTARIX in the 31 day period following the administration of the first dose was 1.752 (99%CI 0.997-3.08) compared to the remaining period up to 1 year of age. Spontaneous reports of intussusception have been received mostly within 7 days after the first dose. These observations are limited to the first dose and not seen following administration of the second dose. It has not been established whether ROTARIX affects the overall incidence of intussusception (see PRECAUTIONS).



The vaccination course consists of two doses. The first dose should be given between 6 and 14 weeks of age. The interval between the two doses should not be less than 4 weeks. The vaccine course should be completed by the age of 24 weeks as safety has not been assessed in older children.

ROTARIX may be given to preterm infants with the same posology (see Adverse reactions).

In clinical trials, spitting or regurgitation of the vaccine has rarely been observed and, under such circumstances, a replacement dose was not given. However, in the unlikely event that an infant spits out or regurgitates most of the vaccine dose, a single replacement dose may be given at the same vaccination visit.
It is strongly recommended that infants who receive a first dose of ROTARIX complete the 2-dose regimen with ROTARIX.


ROTARIX is for ORAL use only.
There are no restrictions on the infant’s consumption of food or liquid, including breast milk, either before or after vaccination.



Rotarix Oral Vaccine Data Sheet, GlaxoSmithKline, 1st April 2011.

Data From the FDA



A demonstrated history of hypersensitivity to any component of the vaccine.
Infants who develop symptoms suggestive of hypersensitivity after receiving a dose of ROTARIX should not receive further doses of ROTARIX.

 Gastrointestinal Tract Congenital Malformation

Infants with a history of uncorrected congenital malformation of the gastrointestinal tract (such as Meckel’s diverticulum) that would predispose the infant for intussusception should not receive ROTARIX.

History of Intussusception

Infants with a history of intussusception should not receive ROTARIX [see Warnings and Precautions (5.5)]. In postmarketing experience, intussusception resulting in death following a second dose has been reported following a history of intussusception after the first dose [see Adverse Reactions (6.2)].

Severe Combined Immunodeficiency Disease

Infants with Severe Combined Immunodeficiency Disease (SCID) should not receive ROTARIX. Postmarketing reports of gastroenteritis, including severe diarrhea and prolonged shedding of vaccine virus, have been reported in infants who were administered live, oral rotavirus vaccines and later identified as having SCID [see Adverse Reactions (6.2)].


ROTARIX is available with a vial of lyophilized vaccine and 2 types of prefilled oral applicators of liquid diluent. One type of applicator has a tip cap which may contain natural rubber latex. The other type has both a tip cap and a rubber plunger which contains dry natural latex rubber. Use of either of these oral applicators may cause allergic reactions in latex-sensitive individuals. The vial stopper does not contain latex.

Gastrointestinal Disorders

Administration of ROTARIX should be delayed in infants suffering from acute diarrhea or vomiting.
Safety and effectiveness of ROTARIX in infants with chronic gastrointestinal disorders have not been evaluated.

Altered Immunocompetence

Safety and effectiveness of ROTARIX in infants with known primary or secondary immunodeficiencies, including infants with human immunodeficiency virus (HIV), infants on immunosuppressive therapy, or infants with malignant neoplasms affecting the bone marrow or lymphatic system have not been established.

Shedding and Transmission

Rotavirus shedding in stool occurs after vaccination with peak excretion occurring around day 7 after dose 1.
One clinical trial demonstrated that vaccinees transmit vaccine virus to healthy seronegative contacts [see Clinical Pharmacology (12.2)].
The potential for transmission of vaccine virus following vaccination should be weighed against the possibility of acquiring and transmitting natural rotavirus. Caution is advised when considering whether to administer ROTARIX to individuals with immunodeficient close contacts, such as individuals with malignancies, primary immunodeficiency or receiving immunosuppressive therapy.


Following administration of a previously licensed oral live rhesus rotavirus-based vaccine, an increased risk of intussusception was observed.1 The risk of intussusception with ROTARIX was evaluated in a pre-licensure randomized, placebo-controlled safety study (including 63,225 infants) conducted in Latin America and Finland. No increased risk of intussusception was observed in this clinical trial following administration of ROTARIX when compared with placebo. [See Adverse Reactions (6.1).]
In a postmarketing, observational study conducted in Mexico, cases of intussusception were observed in temporal association within 31 days following the first dose of ROTARIX, with a clustering of cases in the first 7 days. [See Adverse Reactions (6.2).]
In worldwide passive postmarketing surveillance, cases of intussusception have been reported in temporal association with ROTARIX [see Adverse Reactions (6.2)].

Post-Exposure Prophylaxis

Safety and effectiveness of ROTARIX when administered after exposure to rotavirus have not been evaluated.

(VAN's Note: How would they know since stools are rarely evaluated when an infant has gastroenteritis?).


 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a vaccine cannot be directly compared to rates in the clinical trials of another vaccine, and may not reflect the rates observed in practice. As with any vaccine, there is the possibility that broad use of ROTARIX could reveal adverse reactions not observed in clinical trials.

Solicited and unsolicited adverse events, serious adverse events and cases of intussusception were collected in 7 clinical studies. Cases of intussusception and serious adverse events were collected in an additional large safety study. These 8 clinical studies evaluated a total of 71,209 infants who received ROTARIX (N = 36,755) or placebo (N = 34,454). The racial distribution for these studies was as follows: Hispanic 73.4%, white 16.2%, black 1.0%, and other 9.4%; 51% were male. Solicited Adverse Events: In 7 clinical studies, detailed safety information was collected by parents/guardians for 8 consecutive days following vaccination with ROTARIX (i.e., day of vaccination and the next 7 days). A d.iary card was completed to record fussiness/irritability, cough/runny nose, the infant’s temperature, loss of appetite, vomiting, or diarrhea on a daily basis during the first week following each dose of ROTARIX or placebo.
Adverse events among recipients of ROTARIX and placebo occurred at similar rates.

Fussiness and Irritability occured in 52% of infants vaccinated and in 52% of the placebo (VAN's Note: The FDA don't say what the placebo was).

Cough and Runny Nose
occured in 28% of infants vaccinated and 30% of the placebo.

Fever occured in 25% of infants vaccinated and 33% of the placebo.

Loss of appetite occured in 25% of infants vaccinated and 25% of the placebo.

Vomiting occured in 13% of infants vaccinated and 11% of the placebo.

Diarrhoea occured in 4% of infants vaccinated and 3% of the placebo.

Unsolicited Adverse Events:

Infants were monitored for unsolicited serious and non-serious adverse events that occurred in the 31-day period following vaccination in 7 clinical studies. The following adverse events occurred at a statistically higher incidence (95% Confidence Interval [CI] of Relative Risk excluding 1) among recipients of ROTARIX (N = 5,082) as compared with placebo recipients (N = 2,902): irritability (ROTARIX 11.4%, placebo 8.7%) and flatulence (ROTARIX 2.2%, placebo 1.3%). Serious Adverse Events (SAEs): Infants were monitored for serious adverse events that occurred in the 31-day period following vaccination in 8 clinical studies. Serious adverse events occurred in 1.7% of recipients of ROTARIX (N = 36,755) as compared with 1.9% of placebo recipients (N = 34,454). Among placebo recipients, diarrhea (placebo 0.07%, ROTARIX 0.02%), dehydration (placebo 0.06%, ROTARIX 0.02%), and gastroenteritis (placebo 0.3%, ROTARIX 0.2%) occurred at a statistically higher incidence (95% CI of Relative Risk excluding 1) as compared with recipients of ROTARIX.


During the entire course of 8 clinical studies, there were 68 (0.19%) deaths following administration of ROTARIX (N = 36,755) and 50 (0.15%) deaths following placebo administration (N = 34,454). The most commonly reported cause of death following vaccination was pneumonia, which was observed in 19 (0.05%) recipients of ROTARIX and 10 (0.03%) placebo recipients (Relative Risk: 1.74, 95% CI: 0.76, 4.23).


In a controlled safety study conducted in Latin America and Finland, the risk of intussusception was evaluated in 63,225 infants (31,673 received ROTARIX and 31,552 received placebo). Infants were monitored by active surveillance including independent, complementary methods (prospective hospital surveillance and parent reporting at scheduled study visits) to identify potential cases of intussusception within 31 days after vaccination and, in a subset of 20,169 infants (10,159 received ROTARIX and 10,010 received placebo), up to one year after the first dose.
No increased risk of intussusception following administration of ROTARIX was observed within a 31-day period following any dose, and rates were comparable to the placebo group after a median of 100 days (Table 2). In a subset of 20,169 infants (10,159 received ROTARIX and 10,010 received placebo) followed up to one year after dose 1, there were 4 cases of intussusception with ROTARIX compared with 14 cases of intussusception with placebo [Relative Risk: 0.28 (95% CI: 0.10, 0.81)]. All of the infants who developed intussusception recovered without sequelae.

Kawasaki Disease:

Kawasaki disease has been reported in 18 (0.035%) recipients of ROTARIX and 9 (0.021%) placebo recipients from 16 completed or ongoing clinical trials. Of the 27 cases, 5 occurred following ROTARIX in clinical trials that were either not placebo-controlled or 1:1 randomized. In placebo-controlled trials, Kawasaki disease was reported in 17 recipients of ROTARIX and 9 placebo recipients [Relative Risk: 1.71 (95% CI: 0.71, 4.38)]. Three of the 27 cases were reported within 30 days post-vaccination: 2 cases (ROTARIX = 1, placebo = 1) were from placebo-controlled trials [Relative Risk: 1.00 (95% CI: 0.01, 78.35)] and one case following ROTARIX was from a non-placebo-controlled trial. Among recipients of ROTARIX, the time of onset after study dose ranged 3 days to 19 months.

Postmarketing Experience

The temporal association between vaccination with ROTARIX and intussusception was evaluated in a hospital-based active surveillance study that identified infants with intussusception at participating hospitals in Mexico.

Using a self-controlled case series method, the incidence of intussusception during the first 7 days after receipt of ROTARIX and during the 31-day period after receipt of ROTARIX was compared to a control period. The control period was from birth to one year, excluding the pre-defined risk period (first 7 days or first 31 days post-vaccination, respectively).

Over a 2-year period, the participating hospitals provided health services to approximately 1 million infants under 1 year of age. Among 750 infants with intussusception, the relative incidence of intussusception in the 31-day period after the first dose of ROTARIX compared to the control period was 1.96 (95.5% CI: 1.46, 2.63)]; the relative incidence of intussusception in the first 7 days after the first dose of ROTARIX compared to the control period was 6.07 (95.5% CI: 4.20, 8.63).

The Mexico study did not take into account all medical conditions that may predispose infants to intussusception. The results may not be generalizable to US infants who have a lower background rate of intussusception than Mexican infants. However, if a temporal increase in the risk for intussusception following ROTARIX similar in magnitude to that observed in the Mexico study does exist in US infants, it is estimated that approximately 1 to 3 additional cases of intussusception hospitalizations would occur per 100,000 vaccinated infants in the US within 7 days following the first dose of ROTARIX. In the first year of life, the background rate of intussusception hospitalizations in the US has been estimated to be approximately 34 per 100,000 infants.
Worldwide passive postmarketing surveillance data also suggest that most cases of intussusception reported following ROTARIX occur in the 7-day period after the first dose.

The following adverse events have been reported since market introduction of ROTARIX. Because these events are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to vaccination with ROTARIX.

Gastrointestinal Disorders:

Intussusception (including death), recurrent intussusception (including death), hematochezia, gastroenteritis with vaccine viral shedding in infants with Severe Combined Immunodeficiency Disease (SCID).

Blood and Lymphatic System Disorders: Idiopathic thrombocytopenic purpura. Vascular Disorders: Kawasaki disease. General Disorders and Administration Site Conditions: Maladministration.


 Concomitant Vaccine Administration

In clinical trials, ROTARIX was administered concomitantly with US-licensed and non-US-licensed vaccines. In a US coadministration study in 484 infants, there was no evidence of interference in the immune responses to any of the antigens when PEDIARIX® [Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed, Hepatitis B (Recombinant) and Inactivated Poliovirus Vaccine], a US-licensed 7-valent pneumococcal conjugate vaccine (Wyeth Pharmaceuticals Inc.), and a US-licensed Hib conjugate vaccine (Sanofi Pasteur SA) were coadministered with ROTARIX as compared with separate administration of ROTARIX.

 Immunosuppressive Therapies

Immunosuppressive therapies, including irradiation, antimetabolites, alkylating agents, cytotoxic drugs, and corticosteroids (used in greater than physiologic doses), may reduce the immune response to ROTARIX. [See Warnings and Precautions (5.3).]



Pregnancy Category C

Animal reproduction studies have not been conducted with ROTARIX. It is also not known whether ROTARIX can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity.

Pediatric Use

Safety and effectiveness of ROTARIX in infants younger than 6 weeks or older than 24 weeks of age have not been evaluated.
The effectiveness of ROTARIX in pre-term infants has not been established. Safety data are available in pre-term infants (ROTARIX = 134, placebo = 120) with a reported gestational age 36 weeks. These pre-term infants were followed for serious adverse events up to 30 to
90 days after dose 2. Serious adverse events were observed in 5.2% of recipients of ROTARIX as compared with 5.0% of placebo recipients. No deaths or cases of intussusception were reported in this population.


ROTARIX (Rotavirus Vaccine, Live, Oral), for oral administration, is a live, attenuated rotavirus vaccine derived from the human 89-12 strain which belongs to G1P[8] type. The rotavirus strain is propagated on Vero cells. After reconstitution, the final formulation (1 mL) contains at least 106.0 median Cell Culture Infective Dose (CCID50) of live, attenuated rotavirus.
The lyophilized vaccine contains amino acids, dextran, Dulbecco’s Modified Eagle Medium (DMEM), sorbitol, and sucrose. DMEM contains the following ingredients: sodium chloride, potassium chloride, magnesium sulfate, ferric (III) nitrate, sodium phosphate, sodium pyruvate, D-glucose, concentrated vitamin solution, L-cystine, L-tyrosine, amino acids solution, L-glutamine, calcium chloride, sodium hydrogenocarbonate, and phenol red.
In the manufacturing process, porcine-derived materials are used. Porcine circovirus type 1 (PCV-1) is present in ROTARIX. PCV-1 is not known to cause disease in humans.
The liquid diluent contains calcium carbonate, sterile water, and xanthan. The diluent includes an antacid component (calcium carbonate) to protect the vaccine during passage through the stomach and prevent its inactivation due to the acidic environment of the stomach.

They Don't Know How it Works or If Antibodies Mean Immunity

The exact immunologic mechanism by which ROTARIX protects against rotavirus gastroenteritis is unknown [see Clinical Pharmacology (12.2)]. ROTARIX contains a live, attenuated human rotavirus that replicates in the small intestine and induces immunity.

 Pharmacodynamics Immunogenicity: A relationship between antibody responses to rotavirus vaccination and protection against rotavirus gastroenteritis has not been established.

Shedding and Transmission:

A prospective, randomized, double-blind, placebo-controlled study was performed in the Dominican Republic in twins within the same household to assess whether transmission of vaccine virus occurs from a vaccinated infant to a non-vaccinated infant. One hundred pairs of healthy twins 6 to 14 weeks of age (gestational age 32 weeks) were randomized with one twin to receive ROTARIX (N = 100) and the other twin to receive placebo (N = 100). Twenty subjects in each arm were excluded for reasons such as having rotavirus antibody at baseline. Stool samples were collected on the day of or 1 day prior to each dose, as well as 3 times weekly for 6 consecutive weeks after each dose of ROTARIX or placebo. Transmission was defined as presence of the vaccine virus strain in any stool sample from a twin receiving placebo.
Transmitted vaccine virus was identified in 15 of 80 twins receiving placebo (18.8% [95% CI: 10.9, 29.0]). Median duration of the rotavirus shedding was 10 days in twins who received ROTARIX as compared to 4 days in twins who received placebo in whom the vaccine virus was transmitted. In the 15 twins who received placebo, no gastrointestinal symptoms related to transmitted vaccine virus were observed.


 Carcinogenesis, Mutagenesis, Impairment of Fertility

ROTARIX has not been evaluated for carcinogenic or mutagenic potential, or for impairment of fertility.

Efficacy Studies

The data demonstrating the efficacy of ROTARIX in preventing rotavirus gastroenteritis come from 24,163 infants randomized in two placebo-controlled studies conducted in 17 countries in Europe and Latin America. In these studies, oral polio vaccine (OPV) was not coadministered; however, other routine childhood vaccines could be concomitantly administered. Breast-feeding was permitted in both studies.

Efficacy of ROTARIX against any grade of severity of rotavirus gastroenteritis through one rotavirus season was 87.1% (95% CI: 79.6, 92.1); TVC efficacy was 87.3% (95% CI: 80.3, 92.0). Efficacy against severe rotavirus gastroenteritis through one rotavirus season was 95.8% (95% CI: 89.6, 98.7); TVC efficacy was 96.0% (95% CI: 90.2, 98.8) (Table 4). The protective effect of ROTARIX against any grade of severity of rotavirus gastroenteritis observed immediately following dose 1 administration and prior to dose 2 was 89.8% (95% CI: 8.9, 99.8).
Efficacy of ROTARIX in reducing hospitalizations for rotavirus gastroenteritis through one rotavirus season was 100% (95% CI: 81.8, 100); TVC efficacy was 100% (95% CI: 81.7, 100) (Table 4). ROTARIX reduced hospitalizations for all cause gastroenteritis regardless of presumed etiology by 74.7% (95% CI: 45.5, 88.9).

A randomized, double-blind, placebo-controlled study was conducted in 11 countries in Latin America and Finland. A total of 63,225 infants received ROTARIX (n = 31,673) or placebo (n = 31,552). An efficacy subset of these infants consisting of 20,169 infants from Latin America received ROTARIX (n = 10,159) or placebo (n = 10,010). Vaccine or placebo was given to healthy infants as a 2-dose series with the first dose administered orally from 6 through 13 weeks of age followed by one additional dose administered at least 4 weeks after the first dose. The 2-dose series was completed by the age of 24 weeks of age. For both vaccination groups, the racial distribution of the efficacy subset was as follows: Hispanic 85.8%, white 7.9%, black 1.1%, and other 5.2%; 51% were male.

Efficacy of ROTARIX against severe rotavirus gastroenteritis through one year was 84.7% (95% CI: 71.7, 92.4); TVC efficacy was 81.1% (95% CI: 68.5, 89.3) (Table 5).
Efficacy of ROTARIX in reducing hospitalizations for rotavirus gastroenteritis through one year was 85.0% (95% CI: 69.6, 93.5); TVC efficacy was 80.8% (95% CI: 65.7, 90.0).

Patient Advice

Parents or guardians should be informed by the healthcare provider of the potential benefits and risks of immunization with ROTARIX, and of the importance of completing the immunization series.

The healthcare provider should inform the parents or guardians about the potential for 452 adverse reactions that have been temporally associated with administration of ROTARIX or other vaccines containing similar components.

The parent or guardian should immediately report any signs and/or symptoms of intussusception.

The parent or guardian accompanying the recipient should be instructed to report any adverse events to their healthcare provider.

The parent or guardian should be given the Vaccine Information Statements, which are required by the National Childhood Vaccine Injury Act of 1986 to be given prior to immunization. These materials are available free of charge at the Centers for Disease Control and Prevention (CDC) website (www.cdc.gov/vaccines).



Rotavirus Vaccine Linked to Serious Intestinal Disorder in Infants

Infants who receive the rotavirus vaccine, which protects against a severe diarrheal disease, may have a very small risk of developing a serious intestinal disorder called intussusception, a new study finds.

In the study, researchers examined information collected from the administration of 1.2 million doses of RotaTeq, the most common rotavirus vaccine used in the United States, and more than 100,000 doses of Rotarix, another rotavirus vaccine licensed for use in the U.S.

Source: Live Science, 14th January 2014 - http://www.livescience.com/42544-rotavirus-vaccine-side-effect-intussusception.html

Telegraph Reader Remark on Rotavirus Vaccine Shedding

Our youngest son ended up in hospital with dehydration with this lovely bug when he was 3 weeks old, he contracted it from his cousin who was on his first visit from America, mum and dad didn't bother telling us he has just been vaccinated, and so he would be infectious for 21 days.

Mr. T

Other Reader Comments

From above:- "The bug is the main causes of stomach upsets in young children and causes around 140,000 diarrhoea cases a year in under fives"
When my own children were babies, more than 40 years ago, new mothers were carefully taught hygiene techniques to prevent their babies from contracting 'stomach bugs'.  A health visitor came round regularly to ensure that everything was carefully sterilised and that nappies were also laundered safely, (no disposables in those days!) Breast feeding also protects young babies by transferring mothers' immunity.  I believe that vaccines for common childhood ailments like diarrhoea, should be used sparingly. Vaccines are NOT problem free.

Mrs A.

Vaccine the Greater Risk?

I myself had no knowledge of the scale of the risks.

Anyone interested should look up the controversy over the monkey virus sv40 which was discovered had been accidentally included in the original polio vaccine.

Apart from the risks of inter-species transfer of viruses, there is a known risk in injecting even fragments of DNA in to peoples' bodies.

It is and always will be a balance of risks, but when you target the young, the risks must be real and significant, otherwise the vaccine itself may be the greater risk.


A GP Questions Costings

As an NHS GP I'm bound to be involved in this programme, although the actual vaccinations will be carried out by the practice nurses. I'm immediately suspicious of the published costings.
See: http://www.advisorybodies.doh....
We are told that 840,000 babies are to be vaccinated per annum. Using Rotarix (GlaxoSmithKline) the cheaper of the two available vaccines and with two doses needed to complete the course, at £25 per dose - which is the figure used by the JCVI in their cost/benefit calculations - my calculator says the vaccine alone will cost £42M. Knowing the DoH they probably imagine GPs can be pressured into doing the work for squat - and in present circumstances they may just be right - but there's still a £17M hole here. There's also the question of opportunity cost: what as GPs are we going to have to skimp on to get the extra work done? We are - believe me - all working our butts off. There really is no slack in the system at all. Everywhere I look I see risks taken - unacceptable risks in my view - to maintain any kind of service.
Incidentally, as with the Cervical Cancer vaccine programme, I think we can safely bet the house that the DoH has selected the less effective vaccine so as to save money.
That aside, at least £42M pa for the programme, 14,000 hospital admissions prevented = an assumed cost of £3,000 per admission before it breaks even. Hospital treatment is mighty expensive, but £3,000 still goes quite a long way.
Rotavirus can do nasty things to small babies and toddlers, especially to those already vulnerable from other causes, but the vast majority of children shrug it off without coming to significant harm.
I think we should be making vaccine available at a knock-down price, but privately, to parents who want it. What is Child Allowance for after all?

A Member of the Public Questions Costings

The programme is expected to cost £25 million but is also expected to save £20 million ...
No wonder the public sector is bankrupting this country.


Breastfeeding Prevents Rotavirus!

The reason why this vaccine was developed (aside from money) is because children in third world countries without access to clean water and often the prey of baby milk companies who would stop mothers breastfeeding their infants, would develop gastroenteritis and die as a result. 

This situation does not occur in developed countries where we have access to clean water, sterilization, and re-hydration sachets.

Bottle fed babies get gastroenteritis more frequently than breastfed ones but at least in first world countries their parents can be sure that the water they use to mix up a feed is clean.

Studies Showing Breast Milk Immunises Against Rotavirus

Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis.

Acute gastrointestinal infections due to rotaviruses and other enteric pathogens are major causes of morbidity and mortality in infants and young children throughout the world. Breast-feeding can reduce the rate of serious gastroenteritis in infants; however, the degrees of protection offered against rotavirus infection vary in different populations. The mechanisms associated with milk-mediated protection against viral gastroenteritis have not been fully elucidated. We have isolated a macromolecular component of human milk that inhibits the replication of rotaviruses in tissue culture and prevents the development of gastroenteritis in an animal model system. Purification of the component indicates that the antiviral activity is associated with an acidic fraction (pI = 4.0-4.6), which is free of detectable immunoglobulins. Furthermore, high levels of antiviral activity are associated with an affinity-purified complex of human milk mucin. Deglycosylation of the mucin complex results in the loss of antiviral activity. Further purification indicated that rotavirus specifically binds to the milk mucin complex as well as to the 46-kD glycoprotein component of the complex. Binding to the 46-kD component was substantially reduced after chemical hydrolysis of sialic acid. We have documented that human milk mucin can bind to rotavirus and inhibit viral replication in vitro and in vivo. Variations in milk mucin glycoproteins may be associated with different levels of protection against infection with gastrointestinal pathogens.

Source:  J Clin Invest. 1992 November; 90(5): 1984–1991, doi:  10.1172/JCI116078

Prevention of rotavirus-induced diarrhea by preferential secretion of IgA in breast milk via maternal administration of Lactobacillus gasseri SBT2055.



Rotavirus (RV)-induced diarrhea poses a major health problem, particularly to infants. An effective measure to prevent RV infection is to consume breast milk with higher levels of protective IgA. We therefore examined whether Lactobacillus gasseri SBT2055 (LG2055) could augment immunoglobulin (Ig) A levels and reduce the incidence of diarrhea in a mouse model of RV infection.


Female BALB/c mouse dams were fed a diet containing 0.1% heat-treated LG2055 or a control, beginning 4 weeks before mating with male mice and continuing until the experiment ended. One week after mating, female dams were immunized orally with simian RV SA-11. Five days after birth, mouse pups were infected orally with RV and the incidence of diarrhea was determined 4 days later. RV-specific and total IgA were quantified by an enzyme-linked immunosorbent assay.


LG2055-fed dams immunized with RV (LG2055/RV) secreted breast milk that significantly lowered the incidence of RV-induced diarrhea in their pups as compared with dams immunized with RV alone (C/RV). The LG2055/RV dams also produced a significantly greater amount of RV-specific IgA in breast milk obtained from the pups' stomach, but not in feces or Peyer's patch cell cultures. In addition, LG2055 stimulated total IgA production in splenocyte cultures from Toll-like receptor (TLR)-4-knockout mice, but not those from TLR-2-knockouts.


LG2055-fed dams reduced RV infection in their pups and elevated RV-specific IgA levels in breast milk of stomach origin, the possible mechanism of which may be TLR-2 stimulation by LG2055.

Source: J Pediatr Gastroenterol Nutr. 2012 Jul;55(1):66-71.

Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain.


Human Lactobacillus sp strain GG (Lactobacillus GG) administered during acute rotavirus diarrhea has been shown to promote clinical recovery. To elucidate the immune mechanisms behind such a favorable outcome, the ELISPOT (solid phase enzyme-linked immunospot) assay of Ig- and specific antibody-secreting cells among circulating lymphocytes was used, giving indirect evidence of the immunologic events in the gut. After rehydration, 39 children with acute rotavirus diarrhea, mean age 16 (SD 6) mo, randomly received either a Lactobacillus GG fermented milk product (study group) or a pasteurized yogurt (placebo group). The duration of diarrhea was significantly shorter in the study group than in the placebo group [mean 1.1 (SD 0.6) versus 2.5 (SD 1.4)d, p = 0.001]. Lactobacillus GG therapy was associated with a significantly enhanced nonspecific humoral response during the acute phase of the infection, reflected in the IgG, IgA, and IgM Ig-secreting cell numbers. At convalescence, 90% of the study group versus 46% of the placebo group had developed an IgA specific antibody-secreting cell response to rotavirus (p = 0.006). The results indicate that Lactobacillus GG promotes recovery from rotavirus diarrhea via augmentation of the local immune defense. Furthermore, specific IgA response to rotavirus is endorsed, which is possibly relevant in protection against reinfections.

Source: Pediatr Res. 1992 Aug;32(2):141-4.

Human-Milk Glycans That Inhibit Pathogen Binding Protect Breast-feeding Infants against Infectious Diarrhea

Breast-feeding is a highly effective strategy for preventing morbidity and mortality in infancy. The human-milk glycans, which include oligosaccharides in their free and conjugated forms, constitute a major and an innate immunologic mechanism by which human milk protects breast-fed infants against infections. The glycans found in human milk function as soluble receptors that inhibit pathogens from adhering to their target receptors on the mucosal surface of the host gastrointestinal tract. The α1,2-linked fucosylated glycans, which require the secretor gene for expression in human milk, are the dominant glycan structure found in the milk of secretor mothers, who constitute the majority (∼80%) of mothers worldwide. In vitro and in vivo binding studies have demonstrated that α1,2-linked fucosylated glycans inhibit binding by campylobacter, stable toxin of enterotoxigenic Escherichia coli, and major strains of caliciviruses to their target host cell receptors. Consistent with these findings, recently published epidemiologic data demonstrate that higher relative concentrations of α1,2-linked fucosylated glycans in human milk are associated with protection of breast-fed infants against diarrhea caused by campylobacter, caliciviruses, and stable toxin of enterotoxigenic E. coli, and moderate-to-severe diarrhea of all causes. These novel data open the potential for translational research to develop the human-milk glycans as a new class of antimicrobial agents that prevent infection by acting as pathogen anti-adhesion agents.

Source: J. Nutr. vol. 135 no. 5 1304-1307.  

Full Text Here: http://jn.nutrition.org/content/135/5/1304.full

Cord blood and breast-milk antibodies in neonatal rotavirus infection

Studies were carried out during an outbreak of rotavirus type 2 infection in a neonatal nursery to determine the protective role of antibodies in cord blood and breast milk. The range, distribution, and geometric mean titres of rotavirus-specific antibody in the cord blood were similar among rotavirus-positive and rotavirus-negative neonates, and the amount of virus excreted did not correlate with antibody levels. Despite the protective effect of breast feeding, the pattern of rotavirus-specific IgA and IgG antibodies in the expressed breast milk of mothers of babies who were rotavirus excreters and non-excreters was similar. Nevertheless, a higher proportion of expressed breast milk samples contained rotavirus-specific IgA group 2 (92%) and type 2 (97%) specific antibodies than type I (67%) antibodies, and the geometric mean titres of group 2 and type 2 specific antibodies were tenfold higher than type I antibodies. Among breast-fed babies who excreted rotavirus there was no correlation between type 2 rotavirus-specific IgA antibodies in expressed breast milk and the amount of neonatal virus excretion. These studies suggest that factors other than the rotavirus antibodies in expressed breast milk are of importance in preventing rotavirus infection in newborn infants.

Source: Br Med J. 1980 March 22; 280(6217): 828–830.  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1600947/

Local production of rotavirus specific IgA in breast tissue and transfer to neonates


Rotavirus specific IgA, secretory component, and IgG were measured by enzyme linked immunosorbent assay in 20 pairs of mothers and babies to estimate antibody transfer from the mother, particularly from breast milk to neonatal faeces. Colostrum contained high titres of specific IgA and secretory component, which decreased gradually. Faeces after breast feeding for three days showed detectable titres of IgA and secretory component, with further increases by seven days. There was a positive correlation between titres of secretory component in breast milk and in faeces. To clarify the mechanism of high anti-rotavirus activity in breast milk, ratios of rotavirus specific IgA in maternal serum samples to breast milk were calculated and compared with those that were herpes simplex virus specific. Significantly higher concentrations were obtained for the herpes simplex virus specific samples, indicating that anti-rotavirus IgA is selectively produced in breast tissue.

Source: Arch Dis Child. 1987 Apr;62(4):401-5.  http://www.ncbi.nlm.nih.gov/pubmed/3036019

Rotavirus antibodies in the mother and her breast-fed infant


The transfer of rotavirus antibodies from 25 healthy mothers to their breast-fed infants was investigated during the period of lactation (mean, 3.9 months; range, 1-9 months). Furthermore, the destiny of these antibodies in the infants' gastrointestinal tract and serum was examined. Rotavirus-specific immunoglobulins were analyzed by the ELISA (enzyme-linked immunosorbent assay) technique. All the mothers had rotavirus IgA and IgG in serum. About 80% of the mothers had low concentrations of rotavirus ScIg (i.e., antirotavirus immunoglobulin containing secretory component) in serum at the beginning of the lactation period declining to about 45% at the end of the period. From a few days after delivery to about 2 weeks later, the concentrations of rotavirus IgA and ScIg in milk declined. Thereafter, they remained unchanged. There was a positive correlation among the concentrations of rotavirus IgA in serum and rotavirus IgA as well as ScIg in milk. Rotavirus IgG in the infants' serum correlated with that of the mothers. Few samples of the infants' duodenal fluid contained rotavirus IgA or ScIg. On the other hand, about 80% of the infants' fecal samples contained rotavirus ScIg and IgA. Rotavirus IgA and ScIg disappeared from the infants' feces after cessation of lactation. Hence, it may be concluded that infants receive rotavirus IgG through the placenta, and rotavirus ScIg and IgA in constant amounts via milk throughout the period of lactation. The small intestine is flushed with rotavirus ScIg and IgA at each breast-meal, and these antibodies survive proteolysis in the gut. A possible protectional effect of rotavirus ScIg or IgA requires frequent breast-meals, and the effect is limited to the period of lactation.

Source: J Pediatr Gastroenterol Nutr. 1985 Jun;4(3):414-20.  http://www.ncbi.nlm.nih.gov/pubmed/2991489

Transfer of antibody via mother's milk


Differing from humans, IgG from breast milk in many animal species (rodents, bovines, cats, ferrets, etc.) are transported across the intestinal epithelium into the neonatal circulation. This transport is located at the duodenal and jejunal level where enterocytes express a surface membrane receptor able to bind Fc of IgG and to facilitate transcytosis of these immunoglobulins. Fcgamma-R, which is very similar to the placenta receptor responsible for active transplacental transfer of IgG in humans, binds IgG but not other isotypes. Maternal milk antibodies represent an important part of circulating IgG in these animals, as they are involved in the negative feedback of endogenous IgG synthesis. This phenomenon stops abruptly as soon as weaning takes place. Neonatal calves that have a defect in such transfer of maternal immunoglobulins are at high risk of systemic infectious diseases. In humans, in whom gut closure occurs precociously, breast milk antibodies do not enter neonatal/infant circulation. A large part of immunoglobulins excreted in milk are IgA that protect mainly against enteric infections. The specificity of maternal milk IgA is driven by an entero-mammary cell circulation. Human milk also contains anti-idiotypic antibodies capable of enhancing infant antibody response. Maternal milk antibodies coat infant mucosal surfaces and some have a clear protective role. This has been studied extensively in infectious disease models such as rotavirus, E. coli, poliovirus, and retroviruses. In the rotavirus model, antirotaviral IgA can be detected in stools of breast-fed but not bottle-fed neonates. In a large cohort of lactating women infected with HIV-1 in Rwanda, anti-HIV milk antibodies of the IgG isotype were more frequently detected followed by secretory IgM. Surprisingly, anti-HIV-1 SIgA were less frequently found. The presence of milk SIgA at 15 days as well as the persistence of a SIgM response during the whole lactation period was associated with lower risk of HIV transmission from the mother to the infant. Recently, HIV-1 antibodies from maternal milk have been shown to block transcytosis in vitro in a monolayer enterocyte model. Among these antibodies, those directed against the ELDKWA epitope had higher neutralising activity than serum antibodies. In humans, milk excreted antibodies play a major role in protecting infants from infection by pathogens having a mucosal portal of entry.

Source: Vaccine. 2003 Jul 28;21(24):3374-6.  http://www.ncbi.nlm.nih.gov/pubmed/12850343

Sibling Transmission of Vaccine-Derived Rotavirus (RotaTeq) Associated With Rotavirus Gastroenteritis

Although rotavirus vaccines are known to be shed in stools, transmission of vaccine-derived virus to unvaccinated contacts resulting in symptomatic rotavirus gastroenteritis has not been reported to our knowledge. We document here the occurrence of vaccine-derived rotavirus (RotaTeq [Merck and Co, Whitehouse Station, NJ]) transmission from a vaccinated infant to an older, unvaccinated sibling, resulting in symptomatic rotavirus gastroenteritis that required emergency department care. Results of our investigation suggest that reassortment between vaccine component strains of genotypes P7[5]G1 and P1A[8]G6 occurred during replication either in the vaccinated infant or in the older sibling, raising the possibility that this reassortment may have increased the virulence of the vaccine-derived virus. Both children remain healthy 11 months after this event and are without underlying medical conditions.


Pediatrics Vol. 125 No. 2
pp. e438 -e441
(doi: 10.1542/peds.2009-1901)


Symptomatic Infection and Detection of Vaccine and Vaccine-Reassortant Rotavirus Strains in 5 Children: A Case Series

Vaccine or vaccine-reassortant rotavirus strains were detected in fecal specimens from 5 of 106 (4.7%) immunocompetent children who required treatment for rotavirus gastroenteritis at a large pediatric hospital in Texas in 2009–2010. Four strains were related to pentavalent rotavirus vaccine, whereas one was related to monovalent rotavirus vaccine. The contribution of these strains to each patient's illness was unclear given that 2 patients had prominent respiratory symptoms and 2 were concurrently infected with another pathogen (group F adenovirus and norovirus). Continued monitoring is necessary to assess the role of vaccine strains and vaccine-reassortant strains in pediatric rotavirus infections.

Source: J Infect Dis. 206 (8): 1275-1279. doi: 10.1093/infdis/jis490


Vaccine-derived Human-bovine Double Reassortant Rotavirus in Infants With Acute Gastroenteritis

We describe 3 cases of acute gastroenteritis in healthy infants after vaccination with RotaTeq, shedding a G1P[8] human-bovine double reassortant rotavirus in stools. Such a double reassortant virus appears stable in vitro and may explain diarrheal symptoms in a small percentage of RotaTeq recipients, and might also be transmitted to contacts in the environment.

Source: The Pediatric Infectious Disease Journal, September 2012 - Volume 31 - Issue 9

Detection of Rotateq Vaccine-Derived, Double-Reassortant Rotavirus in a 7-Year-Old Child with Acute Gastroenteritis

We describe a case of acute gastroenteritis in a schoolgirl associated with a detection of vaccine-derived, human-bovine double reassortant G1P[8] rotavirus, without any known contact with recently vaccinated infants. We propose that human-bovine double reassortant G1P[8] may be formed in RotaTeq-vaccinated infants and can occasionally cause gastroenteritis symptoms in vaccine recipients who may rarely transmit the virus to close contacts. The present case suggests that such viruses can remain stable in environment longer than 1 transmission cycle.


Pediatric Infectious Disease Journal:

Rotavirus vaccine-derived shedding and viral reassortants

Two live, attenuated rotavirus vaccines, RotaTeq® (Merck) and Rotarix® (GlaxoSmithKline), have been used in Australia since July 2007 to prevent severe rotavirus gastroenteritis in children. Using active postvaccination monitoring, passive surveillance and state-of-the-art laboratory techniques, Donato et al. report that RotaTeq rotavirus vaccine and vaccine-derived strains were detected actively in stool samples from 13 out of 61 (21.3%) infants having diarrhea within 2 weeks of rotavirus vaccination, and among three out of 460 (0.7%) cases with acute gastroenteritis captured via the Australian Rotavirus Surveillance Program. Six (37.5%) of these 16 vaccine-derived viral specimens were associated with a G1P[8] strain thought to be the result of genetic reassortment between two component RotaTeq strains. Although nearly half of these reassortant-associated cases had underlying medical conditions, such as severe combined immunodeficiency disorder, further study is needed to understand the relationship between shedding, viral reassortants and underlying medical conditions.

Source: Expert Review of Vaccines,
November 2012, Vol. 11, No. 11 , Pages 1311-1314 (doi:10.1586/erv.12.114)

Read More: http://informahealthcare.com/doi/abs/10.1586/erv.12.114

Identification of Strains of Rotavirus Vaccine RotaTeq® in Infants with Gastroenteritis Following Routine Vaccination

Background RotaTeq was introduced into the Australian National Immunisation Program in 2007. This study identified and characterised rotavirus strains excreted by infants who presented with symptoms of gastroenteritis following recent RotaTeq vaccination.

Methods Faecal samples (n=61) from children who developed gastroenteritis following recent RotaTeq vaccination were forwarded to the Australian Rotavirus Surveillance Program (ARSP). RotaTeq positive samples were genotyped and regions of the VP3, VP4, VP6 and VP7 genes were sequenced. Also, 460 rotavirus positive ARSP routine surveillance samples were analysed by dot-blot Northern hybridisation to detect RotaTeq vaccine-derived strains circulating in the community.

Results Thirteen of the 61 samples collected from infants developing gastroenteritis after RotaTeq vaccination contained vaccine-derived rotavirus strains. Of these, four contained a vdG1P[8] strain derived by reassortment between the G1P[5] and G6P[8] parental vaccine strains. Northern hybridisation analysis of 460 surveillance samples, identified three samples that contained RotaTeq vaccine-derived strains, including two vdG1P[8] reassortant vaccine strains.

Conclusions During replication and excretion of RotaTeq, reassortment of parental strains can occur. Shedding of RotaTeq vaccine strains in seven out of 13 infants was associated with underlying medical conditions that may have altered their immune function. The benefits of vaccination outweigh any small risk of vaccine-associated gastroenteritis.


  1. J Infect Dis. doi: 10.1093/infdis/jis361
    Full Text (PDF)

Horizontal transmission of live vaccines

Download full text

Comparison of virus shedding after lived attenuated and pentavalent reassortant rotavirus vaccine

Transmission of rotavirus vaccine or vaccine-reassortant strains to unvaccinated contacts has been reported. Therefore, it is essential to evaluate and characterize the nature of vaccine–virus shedding among rotavirus vaccine recipients. Two groups of healthy infants who received a complete course of RotaTeq (RV5) or Rotarix (RV2) were enrolled (between March 2010 and June 2011) to compare fecal shedding for one month after each vaccine dose. Shedding was assessed using both enzyme immunoassay (EIA) and real-time reverse transcription-polymerase chain reaction (RT-PCR). Eighty-seven infants (34 girls and 53 boys) were enrolled in the study. After the first vaccine dose, the peak time of virus shedding occurred between day 4 and day 7, with positive detection rates of 80–90% by real-time RT-PCR and 20–30% by EIA. In both groups, vaccine shedding occurred as early as one day and as late as 25–28 days. Mixed effects logistic regression analysis of real-time RT-PCR data showed no significant differences between two groups when shedding rates were compared after the first vaccine dose (odds ratio [OR] 1.26; P = 0.71) or after the second vaccine dose (odds ratio [OR] 1.26; P = 0.99). However, infants receiving RV2 shed significantly higher viral loads than those receiving RV5 when compared after the first vaccine dose (P = 0.001) and after the second dose (P = 0.039). In terms of shedding rates detected by real-time RT-PCR, vaccine uptake of RV5 or RV2 among infants in Taiwan was comparable. Clinical significance of higher shedding viral loads in RV2 should be further observed

Source: Vaccine, Volume 32, Issue 10, 26 February 2014, Pages 1199–1204

India to re-evaluate rotavirus vaccine

Delhi will be part of the Indian Government’s plan to study one lakh infants so as to re-evaluate the effect of its indigenous vaccine against rotavirus gastroenteritis which was released earlier this month.

Also part of the study, which is slated to be among the largest for the vaccine, will be infants from Pune and Christian Medical College, Vellore.

“The vaccine has shown associated risk of intussusceptions, a condition that could cause bowel obstruction and may need surgical treatment,” said Dr. Jacob Puliyel, paediatrician at St. Stephen’s Hospital, Delhi. He has been advocating for safe vaccines.

Prime Minister Narendra Modi had on March 9 launched the rotavirus vaccine which was cleared for use after it was tested on 6,600-odd infants between 2006 and 2013. The Hyderabad-based Bharat Biotech is manufacturing the vaccine.

Gagandeep Kang, professor of infectious diseases at the Christian Medical College, Vellore, (who was part of the previous study) said that under the new study one lakh infants will receive three doses of the oral vaccine for a year so that the intussusceptions risk can be measured more precisely.

Meanwhile welcoming the move to re-evaluate the vaccine health experts have also demanded that the government should reveal the “exact number of cases which revealed/showed the vaccine-related risk of intussusceptions.”

Dr. Jacob Puliyel noted: “Peer reviewed journal Vaccine, published a letter written by me and a colleague, asking for disaggregated data on the number of intussusceptions in Vellore in the randomized control trial during the 2 year study period. The protestation of the authors that the vaccine is safe has little meaning if they do not provide the data. However, the data is not available in the papers published and the peer reviewer of Vaccine and the Editor of this international journal felt that it needs to be provided. Serious concerns are raised if safety data in a vaccine trial done with Government of India funding is not provided in spite of a call for it in an internationally indexed scientific journal.”

The Hindu also contacted those involved with the previous study for this specific detail and was told “the study is in public domain and has the percentage of children who indicated vaccine-related risk of intussusceptions,’’ but none of the members actually provided the exact number of children (from Delhi, Pune and Christian Medical College, Vellore) who demonstrate this adverse reaction to the vaccine.

Researchers involved in the clinical trials note that these concerns ‘have little relevance’.

Source: The Hindu, 30 March 2015


Two babies die in France after Rotavirus vaccinations

Health authorities in France are reviewing whether a common vaccine to prevent stomach illnesses should be given to babies, after it emerged this week that two newborns died following the inoculations.

A report has been submitted to France’s Directorate General of Health that raises a number of concerns about adverse effects after the vaccination for gastroenteritis, which is given to newborns.

It comes after the national drugs agency MSNA reported that two babies had died following the vaccination back in 2012 and 2014, revealed on Tuesday by French newspaper La Canard Enchaîné.

According to the report the babies died of an “intussusception” – a serious intestinal condition that sees one portion of the bowel slide into another.

It added that the vaccines Rotarix and RotaTeq, used to prevent infections in babies, have caused a number of worrying side effects, including the two deaths.

The two vaccinations, which are given orally, have been administered to babies since May 2006 and January 2007 respectively.

Since then 508 confirmed reports of adverse effects have been made, including 201 that were logged as “serious”.

The authors of the report from the Technical Committee of “Pharmacovigilance” have questioned whether all babies need to receive the vaccination.

Health authorities are expected to review the findings of the report in the coming days.

Source: The Local, France, 1st April 2015


Text-only version of this page  |  Edit this page  |  Manage website  |  Website design: 2-minute-website.com